Selected Recent Publications
- Vladimir Djordjić, Milana Pavić-Čolić, Nikola Spasojević; Polytropic Gas Modelling at Kinetic and Macroscopic Levels, ArXiv:2004.12225 (2021)
- I.M.Gamba and M. Pavic-Colic; On the Cauchy problem for Boltzmann equation modeling a polyatomic gas; ArXiv:2005.01017v2; submitted for publication, (2020).
- J.A. Morales Escalante, I.M.Gamba; “Entropy-stable positivity-preserving DG schemes for Boltzmann-Poisson models of collisional electronic transport along energy bands” arXiv:1911.00593
- C.A. Pennie and I.M.Gamba; Convergence and Error Estimates for the Conservative Spectral Method for Fokker-Planck-Landau Equations ArXiv:2009.10352;submitted for publication. (2020)
- I. Ampatzoglou, I.M.Gamba, N. Pavlovic and M. Taskovic; “Global well-posedness of a binary-ternary Boltzmann equation” arXiv:1910.14476 (2020) (Submitted for publication.)
- M.-J. Kang, A. Vasseur, Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier-Stokes systems, ArXiv: 1902.01792, To appear in Inventiones Mathematicae. (2020)
- A. Vasseur, M. Vishik, Blow-up solutions to 3D Euler are hydrodynamically unstable, Comm. Math. Phys. 378 (2020), no. 1, 557--568.
- I.M.Gamba and S. Rjasanow; Galerkin-Petrov approach for the Boltzmann equation; ArXiv:1710.05903, Journal of Computational Physics V. 366, (2018) 341-365.
- I.M.Gamba, L.Smith and M.B.Tran; On the wave turbulence theory for stratified flows in the ocean; ArXiv:1709.08266v3, Math. Models Methods Appl. Sci. 30 (2020), no. 1, 105–137.
- C. Zhang and I.M.Gamba; A Conservative Discontinuous Galerkin Solver for Homogeneous Boltzmann Equation ; SIAM J. Numerical Analysis, Vol. 56, No. 5 : pp. 3040-3070 (2018).
- I.M. Gamba; Commentary: Three decades after Cathleen Synge Morawetz's paper "The mathematical approach to the sonic barrier''; Bull. Amer. Math. Soc. (N.S.) 55 (2018), no. 3, 347–350.
- I.M. Gamba, S. Jin, L. Liu; Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations; ArXiv:1809.00028, J. Comput. Phys. 382 (2019), 264–290.